ML

Regularized model-Ridge code

30303 2024. 3. 19. 04:39
728x90

 

 

[목적]

  1. Linear Regression

    - 단순 Linear Regression 활용하여 변수의 중요도 방향성을 알아봄

    - 매우 심플한 모델이기 때문에 사이즈가 데이터에 적합하지 않음

    - 하지만 설명력에서는 장점이 있음

  2. Ridge Regression

    - Regularized Linear Model 활용하여 Overfitting 방지함

    - Hyperparameter lamba 튜닝할 for loop 뿐만 아니라 GridsearchCV 통해 돌출해봄

  3. Regularized Linear Models 경우 X's Scaling 필수적으로 진행해야함

 

[Process]

  1. Define X's & Y

  2. Split Train & Valid dataset

  3. Modeling

  4. Model 해석

 

 

# Package
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge, RidgeCV
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error

data = pd.read_csv('https://www4.stat.ncsu.edu/~boos/var.select/diabetes.tab.txt', sep='\t')

# X's & Y Split
Y = data['Y']
X = data.drop(columns=['Y']) 
X = pd.get_dummies(X, columns=['SEX'])

 

[Data Split]

- Data Split을 진행할 때 BigData의 경우 꼭 indexing을 추출하여 모델에 적용시켜야 함
- 이유는 Data Split하여 새로운 Data set을 만들 경우 메모리에 부담을 주기 때문

 

X.shape[0]

idx = list(range(X.shape[0]))
train_idx, valid_idx = train_test_split(idx, test_size=0.3, random_state=2023)
print(">>>> # of Train data : {}".format(len(train_idx)))
print(">>>> # of valid data : {}".format(len(valid_idx)))

# Linear Regression
results = LinearRegression().fit(X.iloc[train_idx], Y.iloc[train_idx])

 

import scipy
from sklearn import metrics

def sse(clf, X, y):
    """Calculate the standard squared error of the model.
    Parameters
    ----------
    clf : sklearn.linear_model
        A scikit-learn linear model classifier with a `predict()` method.
    X : numpy.ndarray
        Training data used to fit the classifier.
    y : numpy.ndarray
        Target training values, of shape = [n_samples].
    Returns
    -------
    float
        The standard squared error of the model.
    """
    y_hat = clf.predict(X)
    sse = np.sum((y_hat - y) ** 2)
    return sse / X.shape[0]


def adj_r2_score(clf, X, y):
    """Calculate the adjusted :math:`R^2` of the model.
    Parameters
    ----------
    clf : sklearn.linear_model
        A scikit-learn linear model classifier with a `predict()` method.
    X : numpy.ndarray
        Training data used to fit the classifier.
    y : numpy.ndarray
        Target training values, of shape = [n_samples].
    Returns
    -------
    float
        The adjusted :math:`R^2` of the model.
    """
    n = X.shape[0]  # Number of observations
    p = X.shape[1]  # Number of features
    r_squared = metrics.r2_score(y, clf.predict(X))
    return 1 - (1 - r_squared) * ((n - 1) / (n - p - 1))


def coef_se(clf, X, y):
    """Calculate standard error for beta coefficients.
    Parameters
    ----------
    clf : sklearn.linear_model
        A scikit-learn linear model classifier with a `predict()` method.
    X : numpy.ndarray
        Training data used to fit the classifier.
    y : numpy.ndarray
        Target training values, of shape = [n_samples].
    Returns
    -------
    numpy.ndarray
        An array of standard errors for the beta coefficients.
    """
    n = X.shape[0]
    X1 = np.hstack((np.ones((n, 1)), np.matrix(X)))
    se_matrix = scipy.linalg.sqrtm(
        metrics.mean_squared_error(y, clf.predict(X)) *
        np.linalg.inv(X1.T * X1)
    )
    return np.diagonal(se_matrix)


def coef_tval(clf, X, y):
    """Calculate t-statistic for beta coefficients.
    Parameters
    ----------
    clf : sklearn.linear_model
        A scikit-learn linear model classifier with a `predict()` method.
    X : numpy.ndarray
        Training data used to fit the classifier.
    y : numpy.ndarray
        Target training values, of shape = [n_samples].
    Returns
    -------
    numpy.ndarray
        An array of t-statistic values.
    """
    a = np.array(clf.intercept_ / coef_se(clf, X, y)[0])
    b = np.array(clf.coef_ / coef_se(clf, X, y)[1:])
    return np.append(a, b)


def coef_pval(clf, X, y):
    """Calculate p-values for beta coefficients.
    Parameters
    ----------
    clf : sklearn.linear_model
        A scikit-learn linear model classifier with a `predict()` method.
    X : numpy.ndarray
        Training data used to fit the classifier.
    y : numpy.ndarray
        Target training values, of shape = [n_samples].
    Returns
    -------
    numpy.ndarray
        An array of p-values.
    """
    n = X.shape[0]
    t = coef_tval(clf, X, y)
    p = 2 * (1 - scipy.stats.t.cdf(abs(t), n - 1))
    return p

def summary(clf, X, y, xlabels=None):
    """
    Output summary statistics for a fitted regression model.
    Parameters
    ----------
    clf : sklearn.linear_model
        A scikit-learn linear model classifier with a `predict()` method.
    X : numpy.ndarray
        Training data used to fit the classifier.
    y : numpy.ndarray
        Target training values, of shape = [n_samples].
    xlabels : list, tuple
        The labels for the predictors.
    """
    # Check and/or make xlabels
    ncols = X.shape[1]
    if xlabels is None:
        xlabels = np.array(
            ['x{0}'.format(i) for i in range(1, ncols + 1)], dtype='str')
    elif isinstance(xlabels, (tuple, list)):
        xlabels = np.array(xlabels, dtype='str')
    # Make sure dims of xlabels matches dims of X
    if xlabels.shape[0] != ncols:
        raise AssertionError(
            "Dimension of xlabels {0} does not match "
            "X {1}.".format(xlabels.shape, X.shape))
    # Create data frame of coefficient estimates and associated stats
    coef_df = pd.DataFrame(
        index=['_intercept'] + list(xlabels),
        columns=['Estimate', 'Std. Error', 't value', 'p value']
    )
    try:
        coef_df['Estimate'] = np.concatenate(
            (np.round(np.array([clf.intercept_]), 6), np.round((clf.coef_), 6)))
    except Exception as e:
        coef_df['Estimate'] = np.concatenate(
            (
                np.round(np.array([clf.intercept_]), 6),
                np.round((clf.coef_), 6)
            ), axis = 1
    )[0,:]
    coef_df['Std. Error'] = np.round(coef_se(clf, X, y), 6)
    coef_df['t value'] = np.round(coef_tval(clf, X, y), 4)
    coef_df['p value'] = np.round(coef_pval(clf, X, y), 6)
    # Output results
    print('Coefficients:')
    print(coef_df.to_string(index=True))
    print('---')
    print('R-squared:  {0:.6f},    Adjusted R-squared:  {1:.6f},    MSE: {2:.1f}'.format(
        metrics.r2_score(y, clf.predict(X)), adj_r2_score(clf, X, y), sse(clf, X, y)))

 

 

# Scaling
scaler = MinMaxScaler().fit(X.iloc[train_idx])
X_scal = scaler.transform(X)
X_scal = pd.DataFrame(X_scal, columns=X.columns)
# Linear Regression
results = LinearRegression().fit(X_scal.iloc[train_idx], Y.iloc[train_idx])
summary(results, X_scal.iloc[valid_idx], Y.iloc[valid_idx], xlabels=X_scal.columns)
summary(results, X_scal.iloc[train_idx], Y.iloc[train_idx], xlabels=X_scal.columns)

valid train 셋 비교시 valid셋에서 r2 score가 더 높음을 확인 -> 과적합되지 않음

 

[Ridge Regression]
- Hyperparameter Tuning using for Loop
- Hyperparameter Tuning using GridSearchCV

 

[Ridge Regression Parameters]
- alpha : L2-norm Penalty Term
- alpha : 0 일 때, Just Linear Regression
- fit_intercept : Centering to zero
- 베타0를 0로 보내는 것 (베타0는 상수이기 때문에)
- max_iter : Maximum number of interation
- Loss Function의 Ridge Penalty Term은 Closed Form 값이기는 하지만 값을 찾아 나감
- Penalty Term : (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_2

 

penelty = [0.00001, 0.00005, 0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1, 10]

# Using For Loop !! 
# Ridge Regression
# select alpha by checking R2, MSE, RMSE
for a in penelty:
    model = Ridge(alpha=a).fit(X_scal.iloc[train_idx], Y.iloc[train_idx])
    score = model.score(X_scal.iloc[valid_idx], Y.iloc[valid_idx])
    pred_y = model.predict(X_scal.iloc[valid_idx])
    mse = mean_squared_error(Y.iloc[valid_idx], pred_y)
    print("Alpha:{0:.5f}, R2:{1:.7f}, MSE:{2:.7f}, RMSE:{3:.7f}".format(a, score, mse, np.sqrt(mse)))

알파 0.01 혹은 0.1을 택. 

model_best = Ridge(alpha=0.01).fit(X_scal.iloc[train_idx], Y.iloc[train_idx])
summary(model_best, X_scal.iloc[valid_idx], Y.iloc[valid_idx], xlabels = X_scal.columns)

 

# Using GridSearchCV
ridge_cv=RidgeCV(alphas=penelty, cv=5)
model = ridge_cv.fit(X_scal.iloc[train_idx], Y.iloc[train_idx])
print("Best Alpha:{0:.5f}, R2:{1:.4f}".format(model.alpha_, model.best_score_))

# GridSearchCV Result
model_best = Ridge(alpha=model.alpha_).fit(X_scal.iloc[train_idx], Y.iloc[train_idx])
score = model_best.score(X_scal.iloc[valid_idx], Y.iloc[valid_idx])
pred_y = model_best.predict(X_scal.iloc[valid_idx])
mse = np.sqrt(mean_squared_error(Y.iloc[valid_idx], pred_y))
print("Alpha:{0:.5f}, R2:{1:.7f}, MSE:{2:.7f}, RMSE:{3:.7f}".format(0.01, score, mse, np.sqrt(mse)))
summary(model_best, X_scal.iloc[valid_idx], Y.iloc[valid_idx], xlabels=X_scal.columns)